9.2 Solving Single-Step Inequalities, pages 357–359

5. a) $x \ge 29$ b) -7 < x c) x > -13.8 d) $35 \le x$ **6.** a) $y \ge 9$ b) -14.5 < y c) $y \le -4$ d) y > 6.25**7.** a) x > 150 b) $x \le 36$ c) $2.4 \ge x$ d) x > -30

8. a)-c) No, the inequality is not changed because there is no multiplication or division by a negative number.

d) Yes, the direction of the inequality is changed because there is division by a negative number.

e) Yes, the direction of the inequality is changed because there is multiplication by a negative number.

f) No, the inequality is not changed because there is no multiplication or division by a negative number.

9. a) yes **b)** yes **c)** yes **d)** no

10. a) yes **b)** no **c)** no **d)** yes

11. a) yes **b)** no **c)** yes **d)** yes

12. a) yes b) No; the correct answer is x > -16, not x > 16. **13.** a) No; the correct solution is $-9 \ge x$, not $-11 \ge x$. b) yes

14. a) $85f \le 1400$ b) $f \le 16.47$ c) No, the boundary value is not a positive integer, which is required when discussing the number of fence sections.

15. a) 6w > 50 b) $w > 8.\overline{3}$. Megan must win 9 or more races to move up to the next racing category. c) No, the number of races won will be a non-negative integer.

16. a) Example: Three solutions are -6, -20.2, and -10. Three non-solutions are 0, -4, and 8.6.

b) Example: Three solutions are 0, -2, and 5.5. Three non-solutions are -11, -8, and -16.

17. Example: The inequality sign is reversed because each side was divided by a negative number, -5.

18. a) Example: The single sharpening cost is about \$6. When this is divided by 48, the answer is 8. So, if the skates need to be sharpened more than 8 times, the monthly charge would be a better option.

b) 5.75s > 49; s > 8.52. It would be better to take advantage of the monthly special if the skates were sharpened more than 8 times. The estimate and solution to the inequality are the same.

19. a) $0.03p \ge 250$; $p \ge 8333.\overline{3}$. The owner would need to make a profit of at least \$8333.33 in order to donate at least \$250 to the local charity. **b)** Example: Check the boundary point, $8333.\overline{3}$, and then check that both sides of the inequality are equal: $0.03(8333.\overline{3}) = 250$. Check a number that is larger than the boundary value (9000) and see that it is a solution: 0.03(9000) = 270. Since 270 is larger than 250, then 9000 is a solution to the inequality. **20.** $0.084k \le 57$; $k \le 678.57$; They can travel no more than 678.57 km, assuming the car consumes the average amount of fuel.

21. a) Natalie must run 8 laps in order to complete the 3200-m distance: $3200 \div 400 = 8$. The total time of 9 min 23 s is equivalent to 563 s: $9 \times 60 + 23 = 563$. The expression 8x represents her total time, where x is her average time per lap. Consequently, her total time must be less than the current record of 563 s: 8x < 563. **b)** x < 70.375

22. $\frac{s}{5} \ge 120$; $s \ge 600$. She will have to spend at least \$600 to get at least 120 points.

23. a) $115d \ge 1000; 4d \le 50$ b) $d \ge 8.70; d \le 12.5$

c) Chris can build between 9 and 12 doghouses and stay within his guidelines.

24.
$$x > -\frac{5}{6}$$

25. -15 -11

26. The mass of the energy bar must be between 66.67 g and 76.92 g.

27. a) $x \le 5$ b) $x \ge 5$ **28.** a) $-14 \le x$ and $x \le -1$ b) -1 < x and x < 6c) $\frac{5}{2} \ge x$ and $x > -\frac{3}{2}$

9.3 Solving Multi-Step Inequalities, pages 365–367

3. a) x < 11 b) x > -20 c) $50 \le x$

b. a)
$$y \le 10.4$$
 b) $-2.1 > y$ c) $y > -108$ d) $x \le 3\frac{1}{5}$

5. a) Check the boundary value: 3(8) + 11 = 35.

Check another number in the solution set, x = 10: 3(10) + 11 = 41. Since 41 is greater than 35, the solution is correct. **b**) Solve the inequality: 24 - 5x - 24 > 39 - 24. Finally, simplify

$$\frac{-5x}{-5} < \frac{15}{-5}$$
 to get the solution, $x < -3$.

6. a)
$$x < 6$$
 b) $x \ge 11$ c) $x < -\frac{9}{8}$ d) $x > 39$

7. a)
$$y < 2$$
 b) $y \le 10$ **c)** $y > \frac{28}{9}$ **d)** $y \ge 3$

8. a) Example: Let *j* represent the number of jerseys; 40j + 80 < 50j b) Example: Let *n* represent the number of text messages sent in one month; 0.12n < 0.05n + 15**9.** a) 0.05p + 10 > 0.04p + 15 b) John will have to deliver more than 500 papers to make the *Advance* the better offer.

10. a) Example: ABC Rentals would be a better deal if you travel less than 200 km per day (30 ÷ 0.15).
b) 0.14k + 25 < 55 c) ABC Rentals will be the better option if Kim travels less than 214.3 km per day.
11. Kevin's weekly sales must be at least \$4000 for Dollar Deal to pay more.

12. Print Express would be the better option if more than 236 yearbooks are ordered.

13. The member's plan is a better deal when 22 or more buckets of balls are used per month.

14. Molly must sell at least 72 candles in order to make a profit.

15. The first tank will contain less water after

 $27\frac{3}{11}$ minutes have passed.

16. a) Example: Estimate: 20 min b) Rob will be closer to the top after 17.14 min have passed.

