THE RULES OF EXPONENTS

THE BASICS OF EXPONENTS

BASE EXPONENT

dn<

Example

23 · 2 is the base · 3 is the exponent

Read as "Two to the third power"

PRODUCT RULE

$$a^m \cdot a^n = a^{m+n}$$

When multiplying exponents with the same base, add the exponents.

Examples

A.
$$x^3 \cdot x^5 = x^{3+5} = x^8$$

B.
$$3^2 \cdot 3^3 = 3^{2+3} = 3^5$$

QUOTIENT RULE

When dividing exponents with the **same** base, subtract the exponents.

Examples

A.
$$\frac{X^4}{X^2} = X^{4-2} = X^2$$
 B. $\frac{3^5}{3^2} = 3^{5-2} = 3^3$

POWER to a POWER

$$(a^m)^n = a^{m \cdot n}$$

When raising a power to a power, keep the base and **multiply** the exponents.

Examples

A.
$$(x^5)^4 = x^{5\cdot 4} = x^{20}$$

B.
$$(2^2)^3 = 2^{2 \cdot 3} = 2^6 = 64$$

POWER of a QUOTIENT

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
 when be a

When raising a quotient to a power, distribute the exponent to the numerator and denominator. Then simplify the expression.

Examples

A.
$$\left(\frac{x}{y}\right)^5 = \frac{x^5}{y^5}$$
 B. $\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27}$

POWER of a PRODUCT

$$(ab)^n = a^n \cdot b^n$$

When raising a product to a power, distribute the exponent to each factor in the product.

Then simplify the expression.

Examples

A.
$$(xy)^3 = x^3y^3$$

B.
$$(3.4)^2 = 3^24^2 = 9.16 = 144$$

THE ZERO RULE

$$a^0 = 1$$

Any number raised to the zero power is always **one**.

Example

$$2^0 = 1$$