Chapter 5 Practice Test

Chapter 5 Practice Test Page 202 Question 1

The polynomial that is of degree 1 is $3-7 x$. The term with the highest degree is $7 x$. Its degree is 1 . So, the degree of the polynomial is 1 . The correct choice is A.

Chapter 5 Practice Test Page 202 Question 2

The expression, $k+8$, has 8 as its constant. All the other terms have zero as their constant term. The correct choice is B.

Chapter 5 Practice Test Page 202 Question 3

Simplify $3 x-5+2-7 x$.
$3 x-5+2-7 x$
$=3 x-7 x-5+2$
$=-4 x-3$
This is the same expression as choice A.
Simplify the expression in B.

$$
\begin{aligned}
& 3 x-7 x-5+2 \\
= & -4 x-3
\end{aligned}
$$

So, the expression in B is equivalent to the original expression.
Choice C shows a model of $4 x+3$. This is not equivalent to the original expression.
After removing the zero pairs, D shows a model for $-4 x-3$, which is equivalent to the original expression.

The correct choice is C.

Chapter 5 Practice Test Page 202 Question 4

A shows a model of $2 x^{2}-3 x+1$.
B shows a model of $-2 x^{2}+3 x-1$.
C shows a model of $-2 x^{2}+3 x+1$.
D shows a model of $3 x^{2}-2 x+1$.
The correct choice is C.

Chapter 5 Practice Test Page 202 Question 5

The expression in A is a monomial. The expression in B is a monomial.
The expression in C is a binomial. The expression in D is a trinomial.

The correct choice is D.

Chapter 5 Practice Test Page 202 Question 6

The opposite of the expression $-2 k^{2}+3 k-1$ is $2 k^{2}-3 k+1$. The correct choice is B .

Chapter 5 Practice Test \quad Page $202 \quad$ Question 7

$2 t^{2}-5-8 t^{2}-4$
$=2 t^{2}-8 t^{2}-5-4 \quad$ Rearrange the terms, grouping the like terms together.
$=-6 t^{2}-9 \quad$ Subtract the like terms.
When simplified, the expression $2 t^{2}-5-8 t^{2}-4$ becomes $6 t^{2}-9$.

Chapter 5 Practice Test Page 202 Question 8

In the monomial $-q^{2}$, the coefficient is -1 .
Chapter 5 Practice Test Page 202 Question 9
To represent $x^{2}-2 x$, use one positive x^{2}-tile and two negative x-tiles.

Chapter 5 Practice Test Page 202 Question 10

Example: The polynomial $6 a b-11$ has two terms $6 a b$ and -11 . It has two variables a and b. The term with the highest degree is $6 a b$, and its degree is 2 . So, the degree of the polynomial is 2 . It contains the constant term, -11 .

Chapter 5 Practice Test Page 202 Question 11

To find the perimeter of the triangle, find the sum of the side lengths.

$$
\begin{aligned}
& x+(4 x-3)+(2 x+1) \\
= & x+4 x+2 x-3+1 \\
= & 7 x-2
\end{aligned}
$$

A simplified expression for the perimeter of this triangle is $7 x-2$.

Chapter 5 Practice Test Page 203 Question 12

The first diagram represents $\left(x^{2}-x-3\right)$. The second diagram represents $\left(-x^{2}+3 x-1\right)$.

$$
\begin{aligned}
& \left(x^{2}-x-3\right)-\left(-x^{2}+3 x-1\right) \\
= & \left(x^{2}-x-3\right)+\left(x^{2}-3 x+1\right) \\
= & x^{2}+x^{2}-x-3 x-3+1 \\
= & 2 x^{2}-4 x-2
\end{aligned}
$$

Chapter 5 Practice Test Page 203 Question 13
a) $\left(2 x^{2}-8 x+1\right)+\left(9 x^{2}+4 x+-1\right)$
$=2 x^{2}+9 x^{2}-8 x+4 x+1-1$
$=11 x^{2}-4 x$
b) Use algebra tiles to model $(4-6 w)-(3-8 w)$.

Three 1-tiles can be removed. There are only six negative w-tiles. Add two zero pairs, then remove 8 negative w-tiles.

$1+2 w$ remains.
So, $(4-6 w)-(3-8 w)=1+2 w$.

Chapter 5 Practice Test Page 203 Question 14

a) Write an expression for the number of peanuts both squirrels bury.
$(4 n+7)+(5 n-1)$
$=4 n+5 n+7-1$
$=9 n+6$
A simplified expression for the number of peanuts both squirrels bury is $9 n+6$.
b) The expression represents the difference in the number of peanuts each squirrel buried.
c) $(5 n-1)-(4 n+7)$
$=(5 n-1)+(-4 n-7)$
$=5 n-4 n-1-7$
$=n-8$.
A simplified expression is $n-8$.

Chapter 5 Practice Test Page 203 Question 15

a) An expression for the cost of bowling for up to ten children is $100+5 n$, where n represents the number of children.
b) An expression for the cost of pizza in the party room for up to ten children is $20+4 n$, where n represents the number of children.
c) $(100+5 n)+(20+4 n)$

$$
=100+20+5 n+4 n
$$

$$
=120+9 n
$$

A simplified expression for the total cost is $120+9 n$.
d) Example: An estimate is $\$ 200$ for the cost of 9 children going bowling and having pizza in the party room.

To find the actual cost, replace n with 9 in the expression $120+9 n$.

$$
120+9 n
$$

$=120+9(9)$
$=120+81$
$=201$
The cost of nine children going bowling and having pizza in the party room is $\$ 201$.

