Chapter 3 Practice Test

Chapter 3 Practice Test Page 122 Question 1

The value 3 in the power 4^3 is called the exponent. This is choice C.

Chapter 3 Practice Test Page 122 Question 2

The coefficient in the expression $-(-3)^5$ is -1. This is choice B.

Chapter 3 Practice Test Page 122 Question 3

 $(3^2)^4$ = $3^2 \times 3^2 \times 3^2 \times 3^2$ = $(3 \times 3) (3 \times 3) (3 \times 3) (3 \times 3)$ This is choice C.

Chapter 3 Practice Test Page 122 Question	Chapter 3 Practice Test	Page 122	Question 4
---	-------------------------	----------	------------

 $(5 \times 4)^{2}$ = (5 × 4) × (5 × 4) = (5 × 5) × (4 × 4) = 5² × 4² This is choice D.

Chapter 3 Practice Test Page 122 Question 5

$$\frac{(-7)^3 (-7)^5}{(-7)^2} = \frac{(-7)^8}{(-7)^2}$$

Apply the exponent law. Since the bases are the same, add the exponents.

 $=(-7)^6$ Since the bases are the same, subtract the exponents. This is choice A.

Chapter 3 Practice Test Page 122 Question 6

$(7-2)^3 + 48 \div (-2)^4$	Perform the operation within the parentheses.
$=(5)^3+48 \div (-2)^4$	Evaluate the powers.
$= 125 + 48 \div 16$	Divide.
= 125 + 3	
= 128	
This is choice B.	

Chapter 3 Practice Test Page 122 Question 7

 $10^5 \times 5^5$ = $(10 \times 5)^5$ Apply the exponent law. Since the bases have the same exponent, multiply the bases. = 50^5

 $10^5 \times 5^5$ written with only one exponent is 50^5 .

Chapter 3 Practice Test Page 122 Question 8

 $\frac{5^{6}}{8^{6}} = \left(\frac{5}{8}\right)^{6}$ Since the bases have the same exponent, divide the bases. $\frac{5^{6}}{8^{6}}$ written with only one exponent is $\left(\frac{5}{8}\right)^{6}$.

Chapter 3 Practice Test Page 122 Question 9

$$\frac{4^{4} \times 4}{4^{2}}$$

$$= \frac{4 \times 4 \times 4 \times 4 \times 4}{4 \times 4}$$

$$= \frac{1024}{16}$$

$$= 64$$

Chapter 3 Practice Test Page 122 Question 10

In the formula $V = \pi r^2 h$, replace r with 3 cm and h with 6.4 cm. $V = \pi r^2 h$ $V = \pi (3^2)(6.4)$ Evaluate the power. $V = \pi (9)(6.4)$ Substitute for π and multiply. V = 181.0The volume of the cylinder is 181.0 cm³.

Chapter 3 Practice Test Page 122 Question 11

In the formula $d = 4.9t^2$, replace t with 7 s. $d = 4.9t^2$ $d = 4.9(7)^2$ Evaluate the power. d = 4.9(49) Multiply. d = 240.1The skydiver will fall 240.1 m.

Chapter 3 Practice Test Page 122 Question 12

Example: a) $(1-3)^{4} \div 4 =$ 4 b) $(-2)^{0} + 4 \times 17^{0} =$ 5 c) $16 - 9 \times (2^{3}) + (-4)^{2} =$ -40^{2}

Chapter 3 Practice Test Page 122 Question 13

 $243 = 3^{0} \times 3^{5}$ $243 = 3^{1} \times 3^{4}$ $243 = 3^{2} \times 3^{3}$ Since $243 = 3^{5}$, the sum of the exponents on the powers with base 3 must equal 5. There are only three ways to write a sum of 5 using whole numbers: 0 + 5, 1 + 4, and 2 + 3.

Chapter 3 Practice Test Page 123 Question 14

In the formula $V = 0.05hc^2$, replace *h* with 32 m and replace *c* with 2.3 m. $V = 0.05hc^2$ $V = 0.05(32)(2.3)^2$ Evaluate the power. V = 0.05(32)(5.29) Multiply. V = 8.5The volume of the tree to the nearest tenth of a cubic metre is 8.5 m³.

Chapter 3 Practice Test Page 123 Question 15

a) In his first step, Nabil should have added 5 and 3. Then, he should have applied the exponent of 2 to the sum of 8.

b) $(12 \div 4)^4 + (5 + 3)^2$ = $(3)^4 + (8)^2$ Perform the operations within the parentheses. = 81 + 64 Evaluate the powers. = 145The correct answer is 145.

Chapter 3 Practice Test Page 123 Question 16

a)
a 1

Days	Number of bacteria as the product of a coefficient and a power	Number of bacteria
Start	$300(3)^0$	300
1	$300(3)^1$	900
2	$300(3)^2$	2 700
3	$300(3)^3$	8 100
4	$300(3)^4$	24 300
5	300(3) ⁵	72 900
6	300(3) ⁶	218 700
7	300(3) ⁷	656 100

b) A formula that could be used to calculate the number of bacteria, *B*, after *d* days is $B = 300(3)^d$.

c) To find the number of bacteria after 9 days, use the formula $B = 300(3)^d$, and replace d with 9.

 $B = 300(3)^d$ $B = 300(3)^9$ Evaluate the exponent. $B = 300(19\ 683)$ Multiply. $B = 5\ 904\ 900$ After 9 days, there will be 5 904 900 bacteria.

d) Each successive day, there are three times as many bacteria as the day before. To find the number of bacteria in the previous 24-h period, divide the previous total by 3. $300 \div 3 = 100$ The previous day there would have been 100 bectoria

The previous day there would have been 100 bacteria.