Chapter 3 Practice Test

Chapter 3 Practice Test Page $122 \quad$ Question 1

The value 3 in the power 4^{3} is called the exponent. This is choice C.

Chapter 3 Practice Test Page $122 \quad$ Question 2

The coefficient in the expression $-(-3)^{5}$ is -1 . This is choice B.

Chapter 3 Practice Test Page $122 \quad$ Question 3

$$
\begin{aligned}
& \left(3^{2}\right)^{4} \\
= & 3^{2} \times 3^{2} \times 3^{2} \times 3^{2} \\
= & (3 \times 3)(3 \times 3)(3 \times 3)(3 \times 3)
\end{aligned}
$$

This is choice C .

Chapter 3 Practice Test

Page 122 Question 4

$$
\begin{aligned}
& (5 \times 4)^{2} \\
= & (5 \times 4) \times(5 \times 4) \\
= & (5 \times 5) \times(4 \times 4) \\
= & 5^{2} \times 4^{2}
\end{aligned}
$$

This is choice D.

Chapter 3 Practice Test Page 122 Question 5

$$
\frac{(-7)^{3}(-7)^{5}}{(-7)^{2}}
$$

$=\frac{(-7)^{8}}{(-7)^{2}} \quad$ Apply the exponent law. Since the bases are the same, add the exponents.
$=(-7)^{6} \quad$ Since the bases are the same, subtract the exponents.
This is choice A.

Chapter 3 Practice Test

$$
\begin{aligned}
& (7-2)^{3}+48 \div(-2)^{4} & & \text { Perform the operation within the parentheses. } \\
= & (5)^{3}+48 \div(-2)^{4} & & \text { Evaluate the powers. } \\
= & 125+48 \div 16 & & \text { Divide. } \\
= & 125+3 & & \\
= & 128 & &
\end{aligned}
$$

This is choice B.

Chapter 3 Practice Test Page $122 \quad$ Question 7

$$
\begin{aligned}
& 10^{5} \times 5^{5} \\
= & (10 \times 5)^{5} \\
= & 50^{5}
\end{aligned}
$$

$=(10 \times 5)^{5} \quad$ Apply the exponent law. Since the bases have the same exponent, multiply the bases.
$10^{5} \times 5^{5}$ written with only one exponent is 50^{5}.

Chapter 3 Practice Test Page $122 \quad$ Question 8

$\frac{5^{6}}{8^{6}}=\left(\frac{5}{8}\right)^{6} \quad$ Since the bases have the same exponent, divide the bases.
$\frac{5^{6}}{8^{6}}$ written with only one exponent is $\left(\frac{5}{8}\right)^{6}$.

Chapter 3 Practice Test Page $122 \quad$ Question 9

$$
\begin{aligned}
& \frac{4^{4} \times 4}{4^{2}} \\
= & \frac{4 \times 4 \times 4 \times 4 \times 4}{4 \times 4} \\
= & \frac{1024}{16} \\
= & 64
\end{aligned}
$$

Chapter 3 Practice Test Page 122 Question 10

In the formula $V=\pi r^{2} h$, replace r with 3 cm and h with 6.4 cm . $V=\pi r^{2} h$
$V=\pi\left(3^{2}\right)(6.4)$
Evaluate the power.
$V=\pi(9)(6.4)$
$V=181.0$
The volume of the cylinder is $181.0 \mathrm{~cm}^{3}$.

Chapter 3 Practice Test Page 122 Question 11

In the formula $d=4.9 t^{2}$, replace t with 7 s .
$d=4.9 t^{2}$
$d=4.9(7)^{2} \quad$ Evaluate the power.
$d=4.9$ (49) Multiply.
$d=240.1$
The skydiver will fall 240.1 m .

Chapter 3 Practice Test Page 122 Question 12

Example:
a) $(1-3)^{\wedge} 4 \div 4=$ 4
b) $(-2)^{\wedge} 0+4 \times 17^{\wedge} 0=$

5
c) $16-9 \times\left(2^{\wedge} 3\right)+(-4)^{\wedge} 2=$ -40

Chapter 3 Practice Test Page 122 Question 13

$243=3^{0} \times 3^{5}$
$243=3^{1} \times 3^{4}$
$243=3^{2} \times 3^{3}$
Since $243=3^{5}$, the sum of the exponents on the powers with base 3 must equal 5 . There are only three ways to write a sum of 5 using whole numbers: $0+5,1+4$, and $2+3$.

Chapter 3 Practice Test Page 123 Question 14

In the formula $V=0.05 h c^{2}$, replace h with 32 m and replace c with 2.3 m . $V=0.05 h c^{2}$ $V=0.05(32)(2.3)^{2} \quad$ Evaluate the power.
$V=0.05(32)(5.29)$ Multiply.
$V=8.5$
The volume of the tree to the nearest tenth of a cubic metre is $8.5 \mathrm{~m}^{3}$.

Chapter 3 Practice Test Page 123 Question 15

a) In his first step, Nabil should have added 5 and 3 . Then, he should have applied the exponent of 2 to the sum of 8 .
b) $(12 \div 4)^{4}+(5+3)^{2}$
$=(3)^{4}+(8)^{2} \quad$ Perform the operations within the parentheses.
$=81+64 \quad$ Evaluate the powers.
$=145$
The correct answer is 145 .

Chapter 3 Practice Test Page 123 Question 16

a)

Days	Number of bacteria as the product of a coefficient and a power	Number of bacteria
Start	$300(3)^{0}$	300
1	$300(3)^{1}$	900
2	$300(3)^{2}$	2700
3	$300(3)^{3}$	8100
4	$300(3)^{4}$	24300
5	$300(3)^{5}$	72900
6	$300(3)^{6}$	218700
7	$300(3)^{7}$	656100

b) A formula that could be used to calculate the number of bacteria, B, after d days is $B=300(3)^{d}$.
c) To find the number of bacteria after 9 days, use the formula $B=300(3)^{d}$, and replace d with 9 .
$B=300(3)^{d}$
$B=300(3)^{9} \quad$ Evaluate the exponent.
$B=300(19683)$
Multiply.
$B=5904900$
After 9 days, there will be 5904900 bacteria.
d) Each successive day, there are three times as many bacteria as the day before. To find the number of bacteria in the previous $24-\mathrm{h}$ period, divide the previous total by 3 .
$300 \div 3=100$
The previous day there would have been 100 bacteria.

