\qquad
\qquad

Check-In Linear Inequalities

Outcome PR-4 Single variable linear inequalities

1) Choose the term from the list below that best matches the description or definition.

boundary point	inequality	closed circle
open circle	number line	solution

a) A value or values that satisfy an inequality
b) Shows the boundary point is included in the solution
c) A math statement comparing expressions that may not be equal \qquad
d) Shows the boundary point is not included in the solution
2) Write a word statement to express the meaning of each inequality.

Inequality	Word Statement
a) $m>-2$	
b)	
c)	
d) $m \geq 2$	

3) Circle true or false for each of the following statements. If the statement is false, rewrite it to make it true.
a) A closed circle indicates that the boundary point is not a possible value.
\qquad
b) The inequality $-4<x$ means x is greater than -4 .

True False
c) A boundary point is always shown on a number line using an open circle. True False
4) Write an inequality to represent the statement, "The pilot was less than 1.9 m tall".
5) Express each inequality shown on the number line algebraically.
a)

b)

6) What is the difference between $x>3$ and $x \geq 3$?
7) Solve each of the following:
a) $3 x \leq-36$
b) $9.3>-2 x$
c) $y+7 \geq 12$
d) $-5<-x+3$
8) Verify if $3 \geq x$ is the solution to $-9 \geq-\frac{1}{3} x$.

